
The use of motion in mobile device game
mechanics

A study of accelerometers on the Nokia N95
using Python

Claire A Blackshaw
s0027525

May 26, 2008

BLANK

Contents

1 Module Details 3
1.1 Specific learning outcomes . 3
1.2 Deliverables, including milestones 3
1.3 Support Materials . 4

2 Choice of language and platform 5
2.1 Mobile Device . 5

3 Running Python on the N95 6

4 Technical Range of Motion 10
4.1 Technical Device . 10
4.2 Recorded Data . 11

4.2.1 Problems and Flaws Observed 11
4.2.2 Small Shake back and forward 12
4.2.3 Medium Swing over shoulder 13
4.2.4 Large Swing . 14
4.2.5 Violent Swing . 15
4.2.6 Flip over . 16
4.2.7 Jerk . 17
4.2.8 Balance . 18
4.2.9 Flick . 19
4.2.10 Pump . 20
4.2.11 Hammer . 21
4.2.12 Javelin . 22

1

CODE LISTINGS 2

5 Analysis of Motion 23
5.1 Orientation and Rest . 23
5.2 Velocity and Position . 24
5.3 Peaks and Smooth . 24
5.4 Example Gestures . 25
5.5 Conclusions on Motion . 26

6 Catapult Application 27
6.1 Design . 27
6.2 Challenges . 27
6.3 Code . 28

7 Conclusion 33

Code Listings

1 Hello World on N95 . 6
2 Greet Bot . 7
3 Shake Bot . 8
4 Catapult Test . 28

1 MODULE DETAILS 3

1 Module Details

1.1 Specific learning outcomes

1. Analyse and use Python to develop a simple application.
This step is allow for the study of the platform and tools which will be
used throughout the module. Learning Python to the degree required
for this module. Setting up the Nokia N95 to run Python applications
and deployment method. Learning the Python on the S60 3rd edition
libraries.

2. Analyse and use the data captured by a motion device.
Find an appropriate method to capture the data from the motion device.
Format the data into a usable structure.

3. Define and use the motion device to recognise gestures.
Examine the limitations of the device. Supply a proof for what motion
recognition is possible.

4. Develop a simple application using skills gained.
Using the previous knowledge of Python, n95 Platform and Motion study
to develop a test application to demonstrate proof of concept.

1.2 Deliverables, including milestones

1. Learn python on S60 and produce simple Hello-World application

2. Learn the accelerometer API and produce Hello-Shake application

3. Analyse the functionality of the N95 accelerometer and describe range of
possible motions / gestures that could be detected

4. Produce application that recognises a range of discrete gestures

5. Report describing progress on key learning outcomes

1 MODULE DETAILS 4

1.3 Support Materials

• Mobile Python: Rapid Prototyping of Application on the Mobile Platform
by Jűrgen Scheible & Ville Tullos

• Nokia Support forums (Website)
http://discussion.forum.nokia.com/

• Python 101 cheat sheet (Website)
http://www-128.ibm.com/developerworks/library/l-cheatsheet3.
html

• Python 2.4 Quick Reference (Website)
http://rgruet.free.fr/PQR24/PQR2.4.html

• Py60 Documentation (Website)
http://sourceforge.net/projects/pys60

• Nokia Activity Monitor (Website)
http://research.nokia.com/projects/activity_monitor

• Python in Latex (Website)
http://ubuntuforums.org/showthread.php?t=331602

2 CHOICE OF LANGUAGE AND PLATFORM 5

2 Choice of language and platform

2.1 Mobile Device

The choice of a mobile device was made as it is a highly limited device and has
a natural facility for motion. The desktop machine or laptop is not inherently
associated with motion. The device also has a very restrictive input method
through traditional means due to the surface area.

The input method that we investigated first were motion dictation through
image tracking. A method developed by Dr Joe Faith on the Symbian platform.
The method uses the camera phone to detect motion. The method required the
use of Symbian. upon further study Symbian was found to be an impractical
choice of language for rapid prototyping and required a large degree of study
to get started.

The decision was made to avoid Symbian due to these high overheads.
There were also concerns about Symbian’s basic design principles of avoiding
phone lock would interfere with the real-time nature of motion input.

The next platform we examined was BREW (Binary Runtime Environment
for Wireless). A platform which is written in C++ and designed to be optimised
for games. The platform looked extremely appealing however limitations sur-
faced. BREW had s strict signing process which was expensive and was only
supported a limited amount of US carriers. So even if we could have received
an academic licence the platform was not supported by any carries in the UK.

Openmoko Linux was an appealing choice but again the very small subset
of phones which support the platform eliminated it. The iPhone OS was not
available at the start of this project.

We then came back to Symbian due to its popularity but we looked at
higher-level applications. The Python interrupter then came to our attention.
It is a widely supported platform. Python converts extremely easily and is
acknowledge as a powerful rapid prototype language.

At this same time some Python apps on the Nokia N95 were discovered on
some sites. Nokia had released some bindings for their accelerometer in the
Nokia N95. Upon further examination the Nokia accelerometer appeared to
be fully functional and thanks to the Wii-mote open source community several
resources were available on the topic of accelerometers.

While Symbian is a widely distributed OS the use of accelerometers is still
isolated to a handful of phones. The final choice while it appears limited is us-
ing a widespread OS and a very adaptable language. The use of accelerometers
is also on the increase so we have selected this configuration on their assump-
tion their use will become more widespread.

3 RUNNING PYTHON ON THE N95 6

3 Running Python on the N95

The first attempt before receiving the physical device was an attempt to use
the Symbian emulator. Symbian had only recently been converted from 2nd
to 3rd edition. The emulator was openly admitted to be faulty. After several
failed install the program constantly crashed on loading, most sources pointed
to a dependency problem. After some discussion it was decided the emulator
would add no value to the project and we awaited the physical device.

The first hurdle was installing a signed interrupter so we could access the
low level functionality. With the help of the resources and Py60 1. Once Py60
was installed I examined the source of the supplied applications.

All my own applications have to run off a memory stick to comply with
internal security.

The first step was a classic Hello World

Code Listing 1: Hello World on N95

import appuifw
name = appuifw.query(u"Type your Name:", "text")
appuifw.note(u"Hello World! Greetings from " + str(name), "info")

1see Support Materials

3 RUNNING PYTHON ON THE N95 7

While that was deceptively easy I then went through the various sound,
input and graphics libraries to see what relevant tools I would be needing.
Here is an example of a simple program which better utilised program flow
and the libraries.

Code Listing 2: Greet Bot

import appuifw, e32, audio, key_codes

def greet():
appuifw.note(u"Hello World!")
audio.say(u"Hi!")

def love():
appuifw.note(u"I love you!")
audio.say(u"I love you!")

def hate():
appuifw.note(u"I hate you!")
audio.say(u"I hate you!")

def bye():
appuifw.note(u"Goodbye!")
audio.say(u"Bye")

def quit():
print "Greeting Robot Shutdown"
app_lock.signal()

canvas = appuifw.Canvas()
appuifw.app.body = canvas

canvas.bind(key_codes.EKey4, greet)
canvas.bind(key_codes.EKey2, love)
canvas.bind(key_codes.EKey8, hate)
canvas.bind(key_codes.EKey6, bye)

appuifw.app.exit_key_handler = quit
appuifw.app.title = u"GreetBot"
appuifw.app.menu = [(u"Greet", greet),

(u"Converse",(
(u"Love",love),
(u"Hate",hate))),

(u"Bye",bye)]

print "Greeting Robot Ready"
app_lock = e32.Ao_lock()
app_lock.wait()

3 RUNNING PYTHON ON THE N95 8

While this was functional what we really needed to expose was the ac-
celerometer. The device was a secure device only a signed application could
access. Fortunately a bunch of Nokia developers have released aXYZ and the
Activity monitor 2. This allowed us to read an up to date reading directly from
the accelerometer.

Code Listing 3: Shake Bot

import appuifw, e32, axyz, graphics

WHITE = (255,255,255)
RED = (255, 0, 0)
GREEN = (0,255, 0)
BLUE = (0, 0,255)

acl = [1,1,1]
running = True

def read_xyz(x, y, z):
global acl
acl = [x, y, z]
handle_redraw(None)

def handle_redraw(rect):
if img:

img.clear(BLUE)
img.text((10,20), u"X: %d" % (acl[0]), fill = WHITE)
img.text((10,40), u"Y: %d" % (acl[1]), fill = WHITE)
img.text((10,60), u"Z: %d" % (acl[2]), fill = WHITE)
canvas.blit(img)

def handle_event(event):
if event["type"] == appuifw.EEvent.KeyDown:

quit()

def quit():
global running
running = False

Setup Globals
acl = [0,0,0]

Setup Image
img = None
canvas = appuifw.Canvas(redraw_callback = handle_redraw,\

event_callback = handle_event)

w, h = canvas.size
img = graphics.Image.new((w, h))
img.clear(BLUE)

Connect to Sensor
axyz.connect(read_xyz)

2Thanks to cyke64

3 RUNNING PYTHON ON THE N95 9

Setup App
appuifw.app.title = u"N95 accelerometer"
appuifw.app.screen = "large"
appuifw.body = canvas
appuifw.app.exit_key_handler = quit

running = True
Game Loop
while running:

handle_redraw(None)
e32.ao_yield()

Exit
axyz.disconnect()
print "Safely Exited"

Once this application ad a version which save the data to a file was available
we could truly begin examining the device and its limitations.

4 TECHNICAL RANGE OF MOTION 10

4 Technical Range of Motion

4.1 Technical Device

That 3D accelerometer inside N95 , N93i or N82 is from ST-Microelectronics
(type LIS302DL). The European chip maker ST-Microelectronics (STM)has
also supplied the motion-control chip for the Nintendo Wii con-
sole’s controller. This chip is built around a technology known as
Micro Electro-Mechanical Systems (MEMS). Essentially chips with
tiny moving parts like gears. 3

Upon further study of the LIS302DL from ST-Microelectronics we can immedi-
ately glean some useful information. The sensor can be set to±2 or±8gravities.
The resolution however remains roughly the same. In the case of the Nokia
N95 they have set the device to ±2ghowever the sample rate is rather low for
a real-time application.

aXYZ is outputting a simple signed 8bit number per axis giving us the range
of -128 to 127. Now assuming the fidelity is perfect and each number is a
significant measurement that means the smallest motion we can measure is
approximately 0.01575g. Now well this seems highly precise a high level of
noise is introduced as shown by the recordings on page 12.

Now that the technical device has been examined we can examine the out-
put produced.

3http://wiki.forum.nokia.com/index.php/S60 Sensor API

4 TECHNICAL RANGE OF MOTION 11

4.2 Recorded Data

The data recorded below is in the following format, Blue is X, Red is Y, Green is
Z. They have been adjusted so the aspect ratio is as close as possible but some
variance is present.

The action chosen to record is a few variants of an over the should throw as
done by a right handed person. The phone is held so when the throwers arm
is in front of them the phone is held level pointing the screen towards the sky.

The to demonstrate orientation the device is placed on a flat service and
rotated.

The second set of actions is describe in the motion analysis section.

4.2.1 Problems and Flaws Observed

Noise

A high degree of noise exists so smoothing of the data set is essential. This
noise is present even when the phone is at rest. This degree of noise eliminates
fine gesture recognition.

Limited Range

Two gravities is a very small range of for human motion. This speed cap limits
the amount of large movements that can be detected.

As will become apparent in later discussion the use of such a low threshold
for the device introduces some serious limitations. A realistic upper limit for a
motion sensor device would be between 10-20 gravities. This would avoid the
loss of data to ”peaks”, situations where device is experiencing forces above its
2g limit. In this process you lose information.

4 TECHNICAL RANGE OF MOTION 12

4.2.2 Small Shake back and forward

The phone is held in the default position screen facing up towards the sky.
Several very small up down movements are followed by holding the phone
steady in the starting position.

4 TECHNICAL RANGE OF MOTION 13

4.2.3 Medium Swing over shoulder

The phone is swung from over the shoulder to the default position the action
is repeated

4 TECHNICAL RANGE OF MOTION 14

4.2.4 Large Swing

A large full arm steady swing over the shoulder. The motion is repeated.

4 TECHNICAL RANGE OF MOTION 15

4.2.5 Violent Swing

Some violent swings over the should as fast as possible.

4 TECHNICAL RANGE OF MOTION 16

4.2.6 Flip over

Placing the phone on a flat surface then gently flipping it several times.

4 TECHNICAL RANGE OF MOTION 17

4.2.7 Jerk

4 TECHNICAL RANGE OF MOTION 18

4.2.8 Balance

4 TECHNICAL RANGE OF MOTION 19

4.2.9 Flick

4 TECHNICAL RANGE OF MOTION 20

4.2.10 Pump

4 TECHNICAL RANGE OF MOTION 21

4.2.11 Hammer

4 TECHNICAL RANGE OF MOTION 22

4.2.12 Javelin

5 ANALYSIS OF MOTION 23

5 Analysis of Motion

The main problem with the accelerometer when it comes to human gestures is
we have a relative position. The best description I have found of this is the ball
in the box.

If we take an empty box and place a ball in the box and close the box. We
then rotate the box and gravity acts on the ball moving the ball along the edges
of the box as predicted. The problem is if we introduce any form of motion to
the box the ball cannot distinguish between box motion and gravity. No matter
how many balls (sensors) we put in the box (phone) the relative forces will be
relative and with peaks integration of those forces to meaningful coordinates
becomes more guesswork than maths.

The only way to truly solve this problem is to have a fixed position which
we can measure against. While looking into the problem I found several solu-
tions using cameras, WiFi, and even standing waves.

The fact remains we must decide what is possible with this box and ball
approach.

5.1 Orientation and Rest

The easiest and most reliable piece of information we can obtain is the orienta-
tion of the phone. Looking at the final motion capture we see a very predictable
behaviour, if we smooth out the noise.

The orientation information is achieve by taking the normal of all the axis.
The problem is this method only works at rest. The easiest and fairly reliable
approach is to measure the length of the non-normalised vector. If the length
falls within a defined range. I found between 50 and 62 worked fairly well.

This approach can be compromised if the acceleration vector and gravity
vector are aligned in such a way the negate part of each other summing to the
equivalent strength of resting.

5 ANALYSIS OF MOTION 24

5.2 Velocity and Position

The best approach we have for this is to integrate the acceleration to retrieve the
velocity and through that the position. This approach has two major problems
which immediately arise.

The first is whenever the device peaks information is lost so your calcula-
tions are immediately guesswork from that point on. You can use the speed
at which the peak was reach but this is crude and integration expounds these
errors.

The second problem is collision or gravity depending how you wish to look
at it. You need to reliable track gravity through the orientation. You also cant
tell the difference between a phone in free fall and a phone at rest on a table.

Any method that relies on positional tracking using this device is bound to
be highly inaccurate and only workable at very slow speeds.

5.3 Peaks and Smooth

A commonly used motion approach for the wiimote which applies to this de-
vice is the peak and smooth game-play mechanic. As previously discussed it is
exceptionally easy to peak the device but the speed at which the device peaks
can be used to estimate the size of the peak.

A peak is also easy to detect the direction as the motion is violent enough
to minimize the effect of gravity. For these reasons it has become possibly the
most popular game mechanic used in Wii games. Many simple gestures can be
defined by their peaks.

5 ANALYSIS OF MOTION 25

5.4 Example Gestures

• Jerk: We don’t care about the direction, all that is required is the device
peaks on a single axis. The most common tool in a motion sensor game.
As a game mechanic we treat this as a very low resolution analogue but-
ton, or in some cases digital.

• Balance Using the orientation to steer. This has been used for a variety of
balance games and driving games. Driving games simply use the orien-
tation to direct the car or marble. As a game mechanic this is best imple-
mented with jerk or another motion heavy gesture so the player must go
from a violent action to steady balance.

• Flick: Similar to the peak this is normally a flicking motion of the wrist in
a single direction. The final direction of the peak can be difficult to deter-
mine because the device normally peaks before reaching the flick point.
Due to the small time interval it can be roughly estimated by taking the
time it takes for the peak to end. Also if you can afford a second pause
to read the orientation after the flick. As a game mechanic the flick or
toss is an easy motion people understand and thanks to its imprecision
in reality people are more forgiving of errors. The direction is not reliable
enough to be a core game mechanic.

• Pump: A pumping motion along any axis can be measure by the time be-
tween peaks and the alignment of the peaks. A perfect pumping motion
would involve a time between peaks approaching zero and the peaks
would be exactly opposite of each other. As a game mechanic this is ex-
tremely effective. It can measure high-speed motion through the interval
and yet maintains an element of control.

• Hammer: The Hammer is very similar to the Flick and Pump. The player
repeatedly hammers a location in mid air. Like the pump we an use the
symmetry of the two peaks to aid in measuring the action. The problem
is introduced in the variance in arc size of the hammer strike. As the
device is often peaking before the end of the motion much like the flick
we can no longer line up the negatives such as with the pump. As a
game mechanic you can assume a perfect 90 degree arc but ultimately
this method is less robust than Flick or Pump.

• Javelin: By measuring the smoothness of the function leading up to the
peak you can determine the accuracy of the throw. The ideal being a
straight line (consistent forces). You can then compare the peak direction
to the projection of the lines mean. Note this is only for a throw with no
wrist motion. If wrist motion is introduced you either choose to be more
lenient or will need a different approach.

5 ANALYSIS OF MOTION 26

5.5 Conclusions on Motion

The first thing you will notice besides the peaks and noise of the device is the
similarity of actions. So these actions are not so much gesture recognition as
motion detection. We need to know what we are going to get before we process
it.

While this mostly sounds negative there is one alternative approach we
haven’t explored in this paper which is rather successful. Neural Networks
are easily trained using several people demonstrating a motion. The Neural
Network primary ability is pattern recognition so its ideally suited for this ap-
plication.

It must be stressed a Neural Network cannot overcome the physical limita-
tions of the device as we have discussed. However the range of motion it can
detect is rather surprising, it still helps to have a context sensitive dictionary of
gestures which you keep to a bare minimum. The reason we have not explored
Neural Networks is the processing power available to us on a mobile device is
not sufficient to the task.

The most deceptive part about first party demonstrations is they have specif-
ically selected motions which are the least likely to cause confusion and give
the illusion of much wider capability than actually exists. We can use this de-
ception in our applications but it will not be long (in some circles it is already
occurring) that the gaming public realise the limitation of this generation of
motion controller and the repetitive nature of the motions.

6 CATAPULT APPLICATION 27

6 Catapult Application

6.1 Design

We are presenting a simple game in which you load and fire a catapult at a
target. The important part of the demo is the motion controller so we have laid
out the motions clearly in this design.

The player has a catapult and a target which they must hit in the shortest
possible time. Most feedback is auditory to allow free use of motions.

• Load Catapult: This consists of the player performing the pump motion
several times to load the catapult stone.

• Ready the Catapult: The player performs several controlled flips of the
phone. Any peaks will reset this step.

• Aim the Catapult: The player must tilt the phone gently to align the cata-
pult to the target.

• Fire Catapult: This is performed the moment a jerk occurs during the aim-
ing phase.

6.2 Challenges

The main challenge was finding simple solutions to the gesture recognition pat-
terns which needed to be discovered. We decided to write a minimal method
which would function but not measure the degree of success. This is due to the
amount of balancing which is involved in fine tuning these functions.

The lack of a USB cable in the later stages of the project happened things and
transfer times went from seconds to minutes (swapping in and out memory
cards). The lack of a debugger or means to test on windows was also a problem.
There is very recently a project which has started for Linux which involves
writing a py60 emulator.

The actions you take for the catapult game mean the screen is barely visible.
This was overcome using by using sound prompts.

In terms of a graphical interface we coded a simple graphical input but the
lag introduced reduced the quality of the motion sensor.

6 CATAPULT APPLICATION 28

6.3 Code

Code Listing 4: Catapult Test

import appuifw, e32, audio, axyz, graphics, math

WHITE = (255,255,255)
RED = (255, 0, 0)
GREEN = (0,255, 0)
BLUE = (0, 0,255)

Global Varibles
running = 1
totalTime = 0
xyzValues = [0, 0, 0]

lastpeak = [0, 0, 0]
peakTime = 0
levelTime = 0
peak = False

catDir = 0
catAng = 0

def read_xyz(x, y, z):
global xyzValues

if (len(xyzValues) > 50):
del xyzValues[0]
del xyzValues[1]
del xyzValues[2]

xyzValues.append(x)
xyzValues.append(y)
xyzValues.append(z)

def handle_redraw(rect):
if img:

img.clear(BLUE)
#img.text((10,60), u"Time: %d" % (levelTime), fill = RED)
canvas.blit(img)

def handle_event(event):
if event["type"] == appuifw.EEvent.KeyDown:

quit()

def checkPeak(x, y, z):
retValue = (abs(x) > 120) or (abs(y) > 120) or (abs(z) > 120)
return retValue

Load Catapult
This consists of the player performing the pump motion several
times to load the catapult stone.
def load_tick():

6 CATAPULT APPLICATION 29

global xyzValues
global levelTime
global peakTime
global lastpeak
global peak
global running

xyzLen = len(xyzValues)
if(checkPeak(xyzValues[xyzLen-3], \

xyzValues[xyzLen-2], \
xyzValues[xyzLen-1])):

if(peak == False):
if(peakTime > 200):

peakTime = 0

if(((lastpeak[0] > 0) != (xyzValues[xyzLen-3] > 0)) or
((lastpeak[1] > 0) != (xyzValues[xyzLen-2] > 0)) or
((lastpeak[2] > 0) != (xyzValues[xyzLen-1] > 0))):
levelTime -= 1
print u"Pump: %d" % (levelTime)
lastpeak[0] = xyzValues[xyzLen-3]
lastpeak[1] = xyzValues[xyzLen-2]
lastpeak[2] = xyzValues[xyzLen-1]

peak = True
else:

peak = False
peakTime += 1

if(levelTime < 1):
print u"=== READY THE CATAPULT ==="
audio.say(u"Ready, Ready the Catapult")
running = 2
levelTime = 8
peak = False

return True

Ready the Catapult
The player performs slow flips moves to wind the catapult
def ready_tick():

global xyzValues
global levelTime
global peakTime
global lastpeak
global peak
global running

xyzLen = len(xyzValues)
normVector = [xyzValues[xyzLen-3], \

xyzValues[xyzLen-2], \
xyzValues[xyzLen-1]]

if(checkPeak(normVector[0],normVector[1],normVector[2])):

6 CATAPULT APPLICATION 30

print u"FAIL!"
audio.say(u"Fail")
levelTime = 8
print u"=== READY THE CATAPULT ==="
return True

flipDone = False

if(peak):
if((normVector[2] > 45) and (normVector[2] < 60)):

peak = False
flipDone = True

else:
if((normVector[2] > -60) and (normVector[2] < -45)):

peak = True
flipDone = True

if(flipDone):
levelTime -= 1
print u"Flip: %d" % (levelTime)

if(levelTime < 1):
print u"=== AIM THE CATAPULT ==="
audio.say(u"Aim, Aim the Catapult")
running = 3
levelTime = 200

return True

Aim the Catapult
At this point a bearing and distance is given.
The player must tilt the phone gently to align the catapult to the target.
def aim_tick():

global xyzValues
global catDir
global catAng
global running
global levelTime

xyzLen = len(xyzValues)
normVector = [xyzValues[xyzLen-3], \

xyzValues[xyzLen-2], \
xyzValues[xyzLen-1]]

Magnitude = math.sqrt(normVector[0]*normVector[0] + \
normVector[1]*normVector[1] + \
normVector[2]*normVector[2])

if(Magnitude > 0):
normalise vector
normVector[0] = normVector[0] / Magnitude
normVector[1] = normVector[1] / Magnitude
normVector[2] = normVector[2] / Magnitude

if at rest

6 CATAPULT APPLICATION 31

if((Magnitude > 50) and (Magnitude < 62)):
catDir += normVector[0] / 2
catDir = (catDir + 360) % 360

catAng = abs(normVector[1]) * 90
else:

if((levelTime < 1) and \
(checkPeak(xyzValues[xyzLen-3], \

xyzValues[xyzLen-2], \
xyzValues[xyzLen-1]))):

print u"=== FIRE!!! ==="
audio.say(u"FIRE")
running = 4
levelTime = 1000

if(levelTime > 0):
levelTime -= 1

print u"Angle: %d Direction: %d" %(catAng, catDir)
return True

Fire Catapult
This is performed the moment a jerk occurs during the aiming phase.
def fire_tick():

global running
global levelTime
global totalTime

if(levelTime < 0):
running = 0
print u"Your shot took %d ticks" % (totalTime)

levelTime -= 1
return True

def quit():
global running
running = 0

Setup Globals
acl = [0,0,0]

Setup Image
img = None
#canvas = appuifw.Canvas(redraw_callback = handle_redraw,\
event_callback = handle_event)

#w, h = canvas.size
#img = graphics.Image.new((w, h))
#img.clear(BLUE)

Connect to Sensor
axyz.connect(read_xyz)

6 CATAPULT APPLICATION 32

Setup App
appuifw.app.title = u"N95 accelerometer"
appuifw.app.screen = "large"
appuifw.body = canvas
appuifw.app.exit_key_handler = quit

print u"=== LOAD THE CATAPULT ==="
running = 1
levelTime = 25

while (running > 0):
Load Catapult 1

if(running == 1):
load_tick()

Ready the Catapult 2
if(running == 2):

ready_tick()

Aim the Catapult 3
if(running == 3):

aim_tick()

Fire Catapult 4
if(running == 4):

fire_tick()

handle_redraw(None)
totalTime += 1
e32.ao_yield()

Exit
axyz.disconnect()
print "Safely Exited"

7 CONCLUSION 33

7 Conclusion

The choice of platform and device was a well made one. The device is well
suited for rapid prototyping and Python is still flexible. The libraries are well
structured and light weight enough that minimal effort is required to start.

The amount of feedback a mobile platform can provide while doing these
motions is limited. This coupled with the limiting processing power means as
a motion gaming platform it is limited. The use of motion in other applications
however is still a valid.

The motion sensor is a limited device which does not do what sales teams
claim. The processing of motion is several degrees more complex than tra-
ditional controllers. This is compounded if a neural net is used. The range of
motion detection is very limited. This is due to both the low range of the device
and lack of absolute positioning.

If a game is made with the limits in mind a successful game mechanic can
be achieved. The gaming audience is more likely to notice the limited patterns
of this style of motion controller as time passes. This receptiveness could have
a strong negative affect on games which could turn unique control systems into
simple formulaic inputs.

